University of Sofia

$K_L^0 o \pi^\pm e^\mp u$ formfactors

C. Cheshkov, L. Litov, S. Stoynev

Meetings in Physics at the University of Sofia January 2002

Introduction

- \blacksquare The semileptonic decays of K_L mesons:
- valuable information on the structure of weak interactions
- good test for the low-energy models of strong interactions
- sensitive to possible non vector weak interactions
- Evidence exists for nonzero scalar and tensor tormtactors in the case of $K^{\mp} \rightarrow \pi^0 e^{\mp} \nu$
- Investigations of the neutral kaon decays do not give any significant deviation from vector type interactions (within errors)

January 2002

Meetings in Physics at the

Treatment of semileptonic decays

- Theoretical framework
- locality of weak interactions
- \bullet μe universality
- two component neutrino theory
- $\triangle I = 1/2$ rule (I isospin)
- lacktriangle A method for determination of the scalar f_S , vector f_+ and f_- and tensor f_T formfactors - by measuring the Dalitz plot density:

$$\rho(\chi_1, \dots, \chi_n) \equiv \frac{\mathrm{d}^n N}{\mathrm{d}\chi_1 \dots \mathrm{d}\chi_n} \tag{1}$$

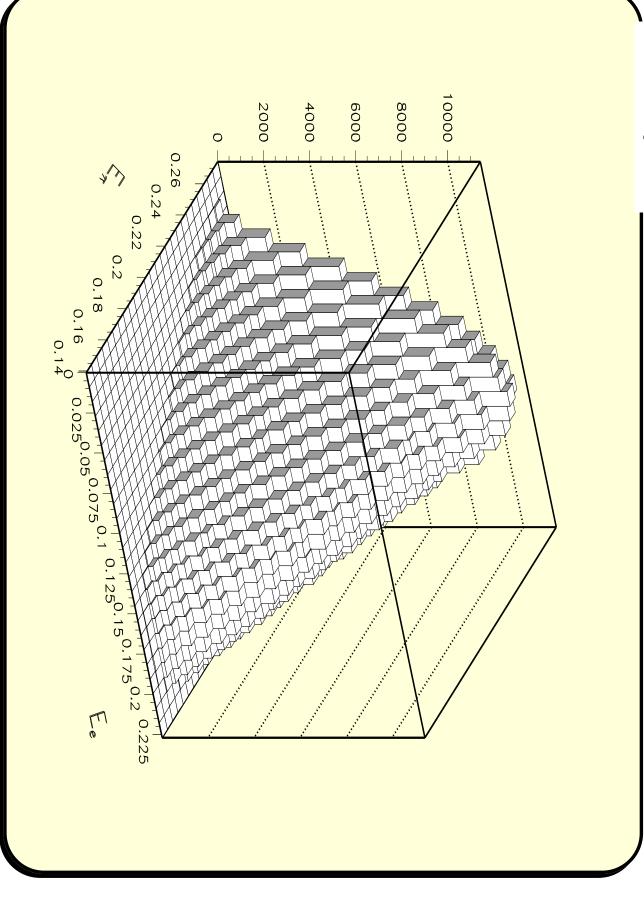
the process χ_i - independent kinematical variables describing

Dalitz plot density

Parametrization of the Dalitz plot density in the rest frame of the kaon:

$$\rho(E_{\pi}, E_e) \sim A|V|^2 + C|S|^2$$

$$V = f_{+}(q^{2}) = f_{+}(0)(1 + \lambda_{+}q^{2}/m_{\pi}^{2})$$


$$S = f_{S} + \frac{1}{m_{K}}(E_{\nu} - E_{e})f_{T}$$

$$A = m_{K}(2E_{e}E_{\nu} - m_{K}E_{\pi}')$$

$$C = m_{K}^{2}E_{\pi}'$$

$$E_{\pi}' = \frac{(m_{K}^{2} + m_{\pi}^{2})}{2m_{K}} - E_{\pi}$$

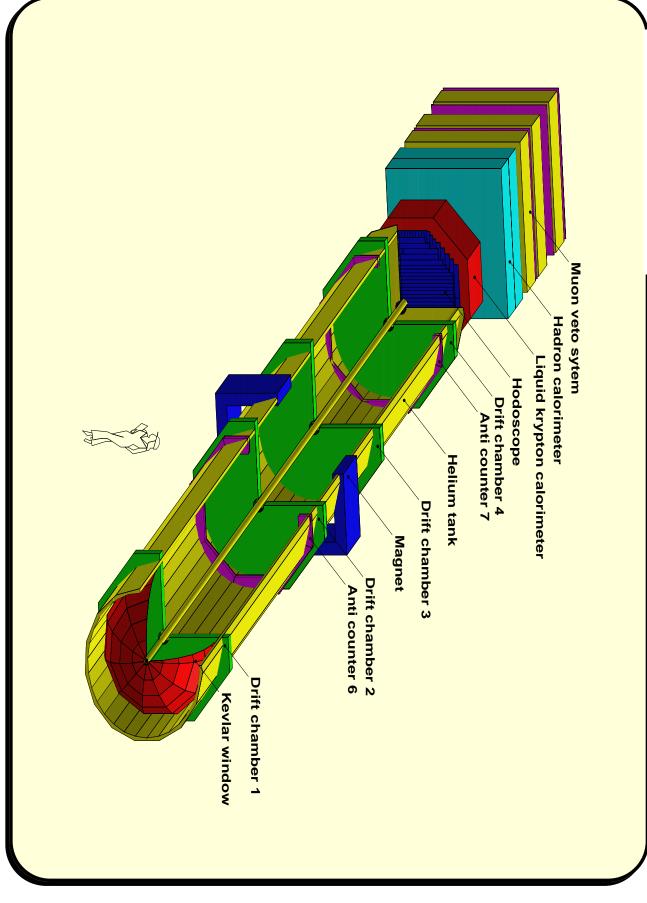
$$q^{2} = (m_{K}^{2} + m_{\pi}^{2} - 2m_{K}E_{\pi})$$

January 2002

Meetings in Physics at the

University of Sofia

 $K_L^0
ightarrow \pi^\pm e^\mp
u$ formfactors


Experimental setup

- The NA48 setup is designed to measure the direct CP violation in the K^0 system
- The neutral beams $(K_S$ and $K_L)$ are derived from 450 GeV/c protons from the CERN SPS
- The decay region is located 120 m downstream after 3 stage collimators and sweeping magnets
- The decay region is contained in an evacuated exit-window tube, 90 m long, terminated by a thin kevlar
- The main detector is situated next to the vacuum tube

January 2002

Meetings in Physics at the

Main detector

January 2002

Meetings in Physics at the

University of Sofia

 $K_L^0 \to \pi^\pm e^\mp \nu$ formfactors

Data and simulation

♦ DATA

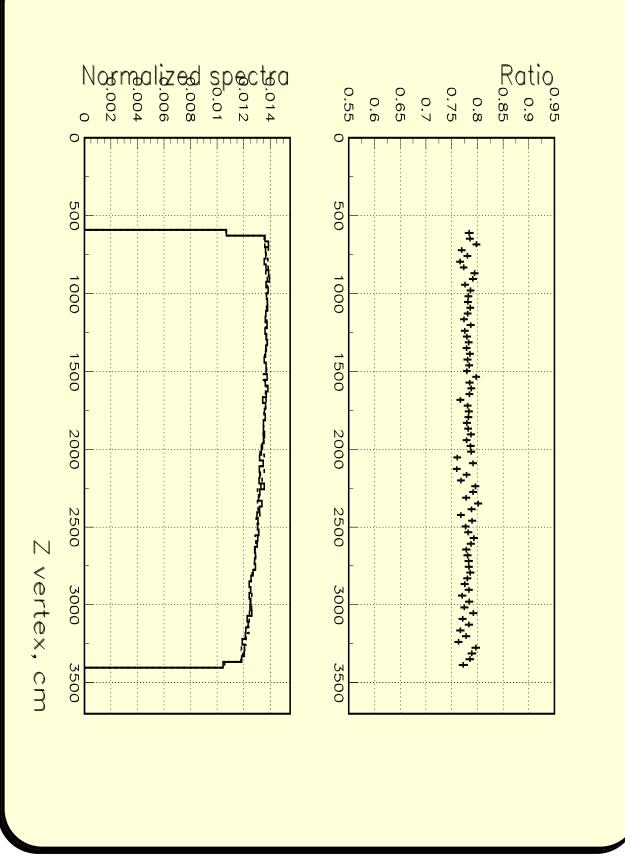
• Special $K\mu 3$ run - September 1999.

Runs: $9216 \rightarrow 9242$

- Run conditions
- No K_S beam
- Alternate magnet polarities
- Trigger 2 charged tracks and vertex reconstructed
- About 10⁸ events recorded

SIMULATION

- MC using nasim031
- K_{e3}^0 decay with $\lambda_+ = 0$
- Radiative corrections embeded in the simulation program
- "richest" experiment by now) We are using kaon spectrum \in (60,180) GeV (this leads to about 10^7 accepted events - 20 times more than the


Event selection

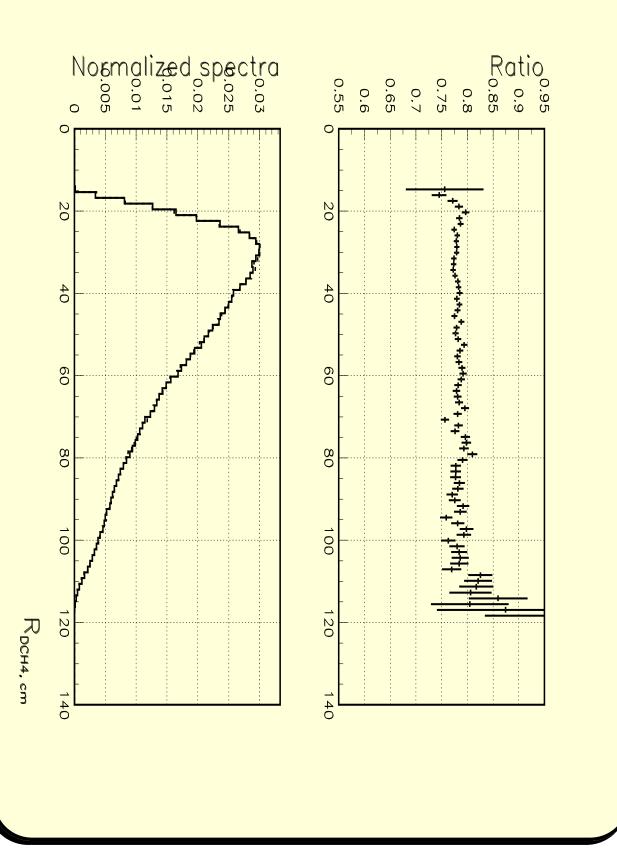
- 2 tracks and 1 vertex
- *** Z** vertex $\in (600, 3400)cm$
- Tracks in the DCH, Lkr and MUVeto acceptance
- ♦ No in time MUV hit
- $\Phi \frac{E}{p} < 0.9 \ (\pi^{\mp}) \text{ and } 0.93 < \frac{E}{p} < 1.1 \ (e^{\pm})$
- $lacktriangleq M_{\pi^+\pi^-} \ 3\sigma$ away from M_K
- $\Rightarrow \pi^+\pi^-\pi^0$ rejection $({P_0'}^2<-0.004)$

at estimated background: The selection gives $6 imes 10^6$ reconstructed experimental Ke3 events

DECAY	MC eval.	CL
$K_L^0 o \pi^\pm \mu^\mp u$	$< 3.5 \cdot 10^{-5}$	90%
$K_L^0 \to \pi^+\pi^-\pi^0$	$< 1.5 \cdot 10^{-5}$	90%
$K_L^0 \to \pi^+\pi^-$	$< 3.5 \cdot 10^{-7}$	90%
$K_L^0 o (\pi \leftrightarrow e) \nu$	$< 1.0 \cdot 10^{-6}$	90%

Experiment vs. MC

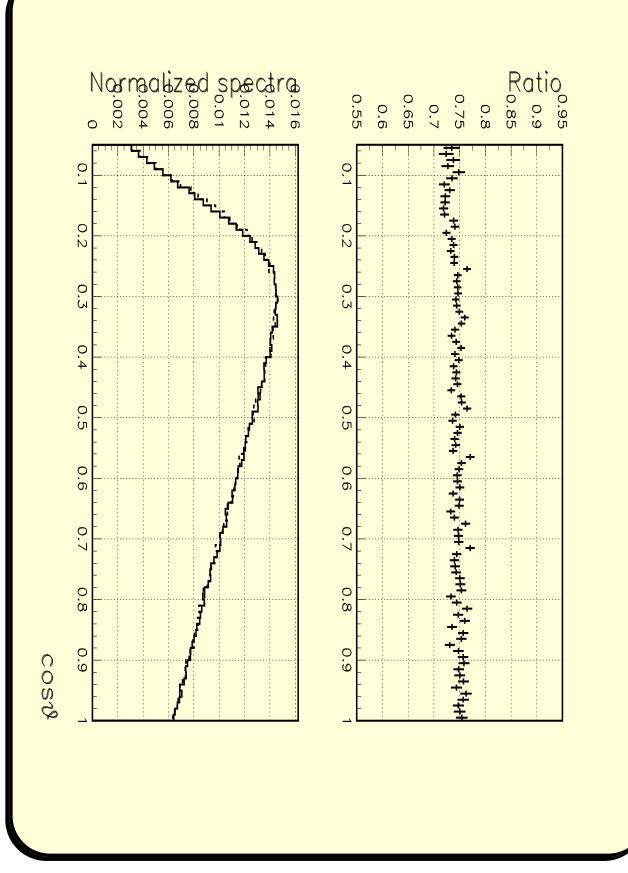
January 2002


Meetings in Physics at the

University of Sofia

 K_L^0 $\rightarrow \pi^{\pm} e^{\mp} \nu$ formfactors

University of Sofia


Experiment vs. MC

January 2002

Meetings in Physics at the

 $ightarrow \, \pi^{\pm} \, e^{\mp}
u \, \, {
m formfactors}$

Reconstruction and analysis technique

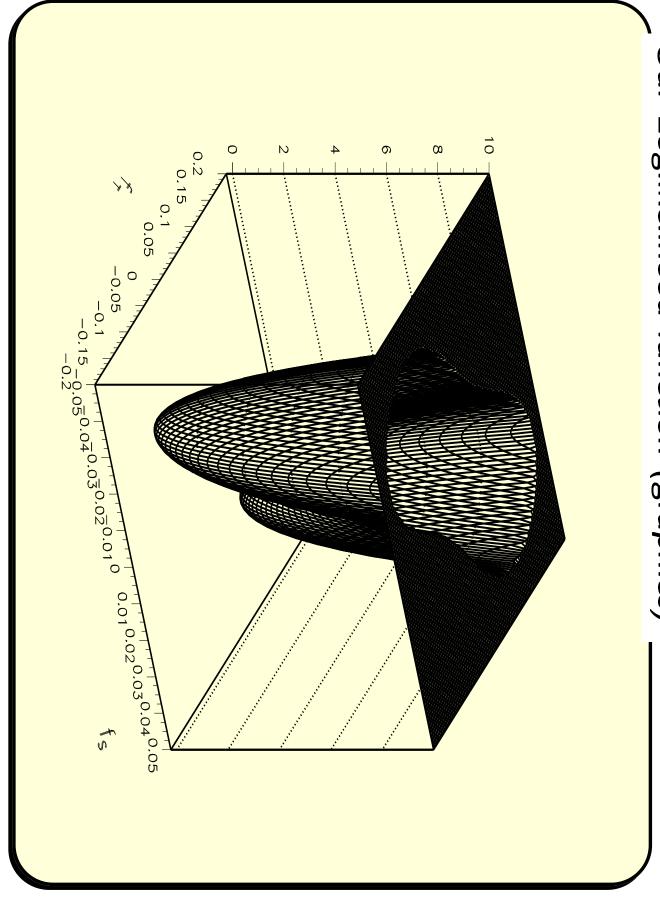
- The kaon momentum (lab system) is reconstructed up to a quadratic ambiguity
- Our method for the determination of the formfactors:
- Using Dalitz plots from both solutions and fitting the Exp and MC three dimensional Dalitz plot $N(E_{
 u},q_1^2,q_2^2)$
- The fitting function is MAXIMUM LOGLIKELIHOOD function

Loglikelihood and χ^2 functions

Maximum Loglikelihood function

$$lnL=-2[\sum_i(d_ilnf_i-f_i)+\sum_i(a_{0i}lnA_{0i}-A_{0i})]$$
 $f_i=\sum_jA_{0i}w_{ij}p_j\equivrac{A_{0i}}{a_{0i}}h_i$ $h_i\equiv\sum_ja_{0i}w_{ij}p_j$ $A_{0i}=rac{d_i+a_{0i}}{1+rac{h_i}{a_{0i}}}$ $A_{0i}=rac{d_i+a_{0i}}{1+rac{h_i}{a_{0i}}}$ i - number of bins , j - MC sources

 d_i - experiment, a_{0i} - MC


 p_j - fitted parameters ($p_j=rac{p_j}{p_0}$, p_0 - norm. coefficient) w_{ij} - functions of kinematical variables ($w_{0i} \equiv 1$)

 h_i - summed [MC-sources]x $[p_j]$

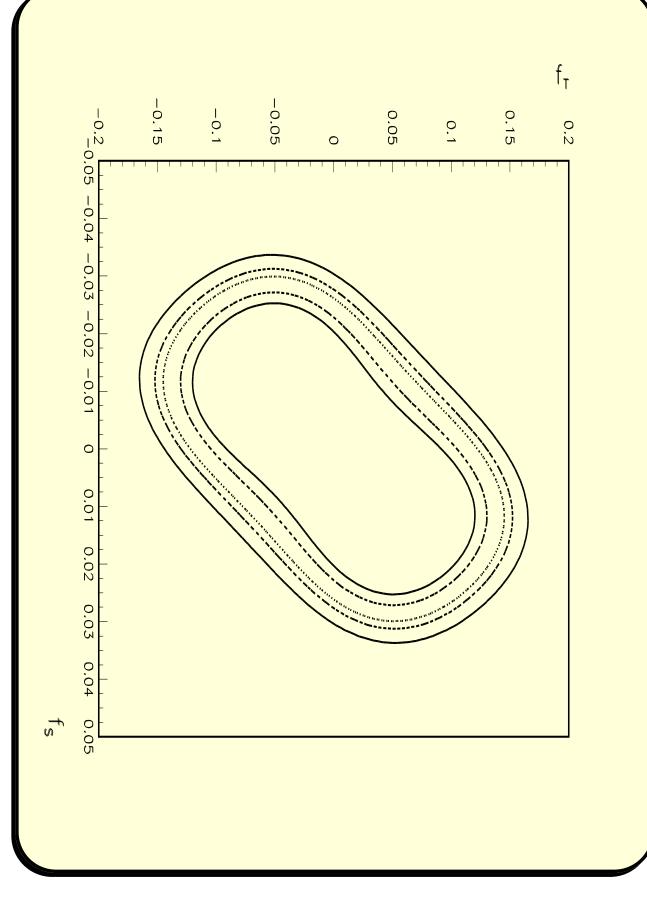
χ^2 function

$$\chi^2 = \sum_i \frac{(d_i + h_i)^2}{d_i + p_0^2 a_{0i}}$$
 $d_i > N_{min}, \ a_{0i} > N_{min}$
 $N_{min} = 20, (30), \dots$

Our Loglikelihood function (graphics)

January 2002

Meetings in Physics at the


University of Sofia

 $K_L^0
ightarrow \pi^\pm e^\mp
u$ formfactors

Results

- Latest (CPLEAR, PL B473(2000) 186): $\lambda_{+} = 0.0245 \pm 0.0012 \pm 0.0022$
- World average (PDG 2000) $|f_S/f_+(0)| < 0.04$ $|f_T/f_+(0)| < 0.23$ $\lambda_{+} = 0.0288 \pm 0.0015$ (Error scaled by 1.3) , CL = 68%CL = 68%
- Our results
- "+" magnetic field $\lambda_+ = 0.03097 \pm 0.00118$ $|f_S/f_+(0)| = 0.016 \pm 0.020$ $|f_T/f_+(0)| = 0.06 \pm 0.10$
- magnetic field $\lambda_{+} = 0.03012 \pm 0.00135$ $|f_{S}/f_{+}(0)| = 0.014 \pm 0.025$ $|f_{T}/f_{+}(0)| = 0.06 \pm 0.10$

Scalar and tensor formfactors - slides

January 2002

Meetings in Physics at the

University of Sofia

 $K_L^0 \to \pi^\pm e^\mp \nu$ formfactors

Results, stability, systematics

Dalitz	λ_+	$ rac{f_S}{f_+(0)} $	$\mid \mid rac{f_T}{f_+(0)} \mid \mid$
	.03036	.010	.04
stat err.	± 0.00135	± 0.020	± 0.10
MUV eff	$+.00001 \\00000$	$+.001 \\001$	$\begin{array}{c} +.01 \\01 \end{array}$
3π rei cuts	+.00000	+.001	+.01
	$00013 \\ +.00001$	+.002 +.000	+.01
Z∏ rej cuts	00002	000	01
Z vertex	00000	001	01
Y vertex	+.00012	+.001	+.01
X vertex	+.00007	+.001	+.01
	00000 +.00000	$^{001}_{+.001}$	+.01
ייי	00010	⊢.001	01
LKr cuts	00010	001	01
MUV cuts	+.00000 -00000	+.000 000	+.00 - 00
# of hins(resolution)	+.00015	+.010	+.02
	00030 +.00005	+.003	+.02
\overline{P} cuts	00015	003	02
K_L spectrum	00035	001	01

January 2002

Meetings in Physics at the

University of Sofia

 $K_L^0 \to \pi^\pm e^\mp \nu$ formfactors

Conclusions

We have obtained the following values for the formfactors:

$$\lambda_{+} = 0.03060 \pm 0.00089 \stackrel{+.00027}{-.00052}$$

 $|f_{S}/f_{+}(0)| = 0.015 \pm 0.016 \stackrel{+.011}{-.006}$
 $|f_{T}/f_{+}(0)| = 0.06 \pm 0.07 \stackrel{+.05}{-.05}$

- The result is stable upon various acceptance cuts
- We don't see significant divergence vrom V-A model of the weak interaction
- \clubsuit Our value for λ_+ is in an agreement with world average (PDG)