1. Hierarchy of the structures and scales. Matter, atoms, nucleus, nucleons, quarks.
   Quark-lepton symmetry,  generations. Fundamental interactions and their carriers.
   Intensity and radius of action. (1 hour)
2. Bases of the kinematics of the elementary particles. (3 hours)
     - Minkowski spacetime. Lorentz transformations, relativistic invariants, effective mass.
     - Laboratory frame, mass-center frame. Transition between different reference frames.
     - Conservation of the energy and momentum.
     - Degrees of freedom.
     - Measurement units of basic quantities in Elementary Particle Physics.
3. S-matrix in interaction representation. (3 hours)
     - Schrodinger representation, Dirac representation.
     - S-matrix : definition, physical meaning.
     - Expansion of S-matrix on powers of interaction constant. Graphical representation - Feynman diagrams.
4. Phase volume. Decay probability. Cross-section of process. (2 hours)
     - Phase volume definition.
     - Decay probability,mean life time.
     - Cross-section of interaction.
5. Symmetry, invariance and conservation laws. 
(4 hours)
     - Symmetry in Quantum Physics. Conservation of the energy and momentum.
     - Elements of group theory : group, group representations, group algebra, Casimir operators.
     - Representations of SU(2) group, isospin.
     - Spatial symmetries : continuous and discrete, Lorentz group, Poincare group, spatial reflection,time reflection, charge conjugation.
     - Global and local symmetries.
6. Basic properties of the elementary particles. 
(2 hours)
     - Spatial and internal quantum numbers : mass, spin, electrical charge, colour, flavour. Leptons and hadrons,  mesons, baryons, hyperons, bosons and fermions.
     - Width and mean life time of unstable particles : a mean life time classification, resonances, Breit-Wigner distribution.
     - Fundamental particles.
7. Interactions of elementary particles. (2 hours)
     - Basic types of interactions.
     - Electromagnetic interaction : local gauge invariance, electromagnetic field.
     - Non-Abelian gauge invariance. Gauge bosons.
8. Experimental technique in Elementary Particle Physics. (8 hours)
     a) High energy particles sources. Cosmic rays.
     b) Accelerators.
          - Basic principles. Types : linear and cyclic accelerators, basic characteristics.
          - Cyclotron, phasotron, synchrotron, synchro-phasotron.
          - Colliders.
          - Accelerator complexes.
      c) Processes of interactions of high energy particles with matter and their usage for registration of particles.
           - Registration of charged particles : ionization, Cherenkov radiation, transition radiation.
           - Registration of electromagnetic radiation; physical processes, radiation length.
       d) Detectors of elementary particles. Types and basic principles.
           - Basic characteristic of the detectors.
           - Track detectors - multiwire proportional chambers, drift chambers, TPC, semiconductor detectors.
           - Scintillation counters.
           - Cherenkov counters - threshold, differential, RICH.
           - Electromagnetic and hadron calorimeters - measurement of the energy of the photons, electrons and hadrons.
           - Measurement of the particle momentum.
           - Detector complexes.
9. Strong interaction. (6 hours)
      - Isospin.
      - Strange particles. Connection between isospin, strangeness and electric charge.
      - SU(3)-symmetry. Quark model : SU(3) classification, baryon and meson multiplets, wave functions,quarks, Gell-Mann - Nishigima formula.
      - c, b, t - quarks.
      - Experimental evidences for existence of quarks.
          - Lepton - nucleon scattering.
          - Formfactors, quark - parton model, structure functions.
      - Colour and gluons, Quantum chromodynamics.
          - Introduction of quantum number colour, colourlessness of the hadrons, confinement.
          - Experimental evidences for existence of colour : decay pi-zero->2gamma, e+e- annihilation, hadron jets.
          - Quantum chromodynamics : local SU(3) symmetry; gluons; asymptotic freedom.
          - Experimental evidences for existence of gluons.
10. Weak interaction. (5 hours)
          - Weak decay and reactions.
          - Lepton and quark currents.
          - Cabibbo current, quark mixing.
          - CP-violation : CPT theorem, CP-violation in K-decays.
          - Neutral currents, experimental observation.
          - Neutrino mass.  Neutrino oscillations.
11. Unification of the electromagnetic and weak interactions. (5 hours)
          - Interaction between charged currents, the carriers of the weak interaction.
          - Spontaneous symmetry breaking. Higgs mechanism.
          - Glashow-Weinberg-Salam model.
          - W and Z bosons, Weinberg angle, Higgs boson.
          - Kobayashi-Maskawa matrix.
12. Grand Unification. (2 hours)
          - Running interaction constant.
          - Standard model.
          - Beyond the Standard model : SU(5), SO(10), E6; proton decay.
          - Supersymmetric models.
13. Modern experiments for verification of the Standard model. (3 hours)
          - e+ e- factories : tau, B and Z factories.
          - proton-proton and proton-antiproton colliders.
          - Accelerator complexes  in CERN, LEP.
          - Detectors working on LEP.
          - Experimental results : number of the generations, mass of the Z-boson, mass of the t-quark,running constant.
14. Problems in Elementary Particle Physics. Basic directions of development - theory and experiment. 
(1 hour)